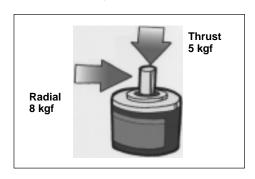
OMRON

Absolute Rotary Encoder

E6C2-A

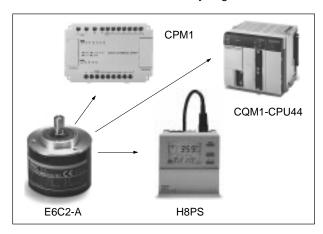
The Tough E6C2-A Absolute Rotary Encoder Provides IP64 Degree of Protection and Ensures Ease of Use in Combination with the Programmable Controller or Cam Positioner.


■ IP64 (IEC529) for Durability

The E6C2-A is a compact model that is 38 mm in length and 50 mm in diameter. It also incorporates a seal bearing, thus meeting IP64.

■ Shaft is Approximately Twice as Strong as Conventional Shafts

The E6C2-A has a stainless steel shaft that is 8 mm in diameter and approximately twice as strong as OMRON's conventional Rotary Encoder shaft. The E6C2-A also has a reliable bearing and metal slit plate, thus ensuring a shock resistance of 1,000 m/s².



■ Combines with the Programmable Controller or Cam Positioner for Ideal Angle Control

The E6C2-A resolution per rotation is as high as 256 (8 bits) to 1,024 (10 bits). The E6C2-A used in combination with the CQM1 Programmable Controller or H8PS Cam Positioner ensures ideal and easy angle control.

Ordering Information

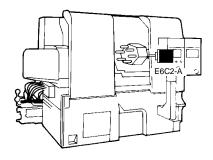
Absolute Rotary Encoders

Supply voltage	Output configuration	Output code	Resolution (p/r)	Connection method	Model
12 to 24 VDC	NPN open collector	Gray code	256	Connector	E6C2-AG5C-C
	output		256, 360, 720, 1,024	Pre-wired	E6C2-AG5C
		Binary	32, 40		E6C2-AN5C
		BCD	6, 8, 12		E6C2-AB5C
	PNP open collector	Gray code	256, 360, 720, 1,024		E6C2-AG5B
	output	Binary	32, 40		E6C2-AN5B
		BCD	6, 8, 12		E6C2-AB5B
5 VDC	Voltage output	Binary	256		E6C2-AN1E
12 VDC					E6C2-AN2E

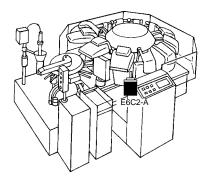
Note: 1. When ordering, specify the model number and resolution.

2. The H8PS can be connected to the E6C2-AG5C-C but not to the E6C2-AG5C.

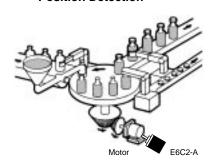
■ Accessories (Order Separately)


Refer to page 15 for details.

Item	Model
Coupling	E69-C08B
Flange	E69-FCA03
	E69-FCA04
Extension Cable (see note)	E69-DF5


Note: In addition to the above Extension Cable, 10-, 15- 20-, and 98-m-long Extension Cables are available.

Application Examples


NC Machine Tool for Cutter Position Detection

Vacuum Packaging Machine

Bottling Machine for Table Position Detection

Specifications —

■ Ratings/Characteristics

Item	E6C2- AG5C-C	E6C2- AG5C	E6C2- AN5C	E6C2- AB5C	E6C2- AG5B	E6C2- AN5B	E6C2- AB5B	E6C2- AN1E	E6C2- AN2E	
Output configuration	NPN PNP						Voltage output			
Power supply voltage	12 VDC ^{-10%} to 24 VDC ^{+15%} , ripple (p-p) 5% max.						5 VDC ±5%	12 VDC ±10%		
Current consumption	70 mA max.								80 mA max.	
Resolution (see note 1) (pulses/rotation)	256	256, 360, 720, 1,024	32, 40	6, 8, 12	256, 360, 720, 1,024	32, 40	6, 8, 12	256		
Output code (absolute)	Gray code		Binary	BCD	Gray code	Binary	BCD	Binary		
Output capacity	Applied voltage: I _{sink} : 35 mA max. Residual voltage			rent of		A max. roltage: 0.4 \ nt of 35 mA)	/ max. (at	Output resistance: 2.4 kΩ	Output resistance: 8.2 kΩ	
	35 mA)							I _{sink} : 35 mA max. Residual voltage: 0.4 V max. (at sink current of 35 mA)		
Rise and fall times of output	1 μs max. (cable	length: 2m;	I _{sink} : 35 mA	max.)				Rise: 3 μs max. Fall: 1 μs max.	Rise: 10 μs max. Fall: 1 μs max.	
Max. response frequency (see note 2)	20 kHz						10 kHz			
Logic	Negative logic ou	Negative logic output (H=0, L=1) Positive logic output (H=1, L=0)								
Rotational direction (see note 3)	Output code incre	emented by	clockwise ro	otation (as vi	ewed from t	the face of th	ne shaft.)	Changed us rotational di designation	rection	
Strobe signal	Not available		Available		Not available	Available		Not available	e	
Positioning signal	Not available			Available	Not availal	ble	Available	Not available	e	
Parity signal	Not available		Available (even number)	Not availab	ole	Available (even number)	Not availal	ble		
Starting torque	9.8 mN • m max. 14.7 mN • m max			•						
Moment of inertia	1.5 x 10 ⁻⁶ kg • m	2								
Shaft loading	Radial: 78.4 N Thrust: 49 N									
Maximum permissible rotation	5,000 rpm									
Ambient temperature		Operating: -10°C to 70°C (with no icing) Storage: -25°C to 85°C (with no icing)								
Ambient humidity	35% to 85% (with no condensation)									
Insulation resistance	1,000 MΩ min. (a	1,000 M Ω min. (at 500 VDC) between current-carry parts and case								
Dielectric strength		500 VAC, 50/60 Hz for 1 min between current-carry parts and case								
Vibration resistance	Destruction: 10 to			·		for 11 min. 3	times each	in X, Y, and 2	Z directions.	
Shock resistance	Destruction: 1,00	0 m/s ² , 6 tir	nes each in	X, Y, and Z	directions					

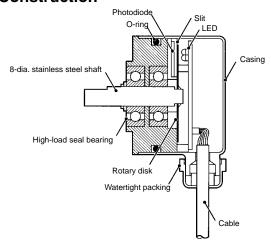
Note: 1. The codes are classified as shown in the following table.

Output code	Resolution	Code number
Binary	32	1 to 32
	40	1 to 40
	256	0 to 255
BCD	6	0 to 5
	8	0 to 7
	12	0 to 11
Gray code	256	0 to 255
	360	76 to 435 (Remainder of 76)
	720	152 to 871 (Remainder of 152)
	1,024	0 to 1,023

The electrical maximum response rotation is determined by using the resolution and maximum response frequency in the following formula.

Electrical maximum response rotation (rpm) =
$$\frac{\text{Maximum response frequency}}{\text{Resolution}} \times 60$$

Therefore, a signal cannot follow electrically if the actual rotation exceeds the maximum response rotation.


3. With the E6C2-AN1E and E6C2-AN2E models, the output code can be increased in the clockwise direction by connecting the rotational direction designation input (wire color: pink) to H (Vcc), and the output code can be decreased in the clockwise direction by connecting the input to L (0 V).

E6C2-AN1E: H=1.5 to 5 V, L=0 to 0.8 V E6C2-AN2E: H=2.2 to 12 V, L=0 to 1.2 V

With the E6C2-AN1E and E6C2-AN2E models, read the code at least 10 µs after the LSB (20) code has changed.

4. JEM1030: applicable since 1991.

■ Construction

The E6C2-A incorporates a high-performance LED, custom-made diode array, high-density printed circuit board, and a compact, watertight, seal bearing that withstands heavy loads, thus ensuring high mechanical durability, watertight performance, and compactness. Furthermore, the O-ring applied to the casing and a watertight packing applied to the cable connector enhance the watertight performance of the E6C2-A.

Operation -

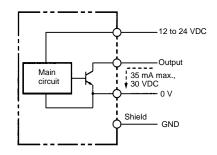
■ Connections

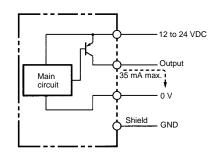
Connector Specifications

Pin number	E6C2-AG5C-C
	Output signal
	8-bit (256)
1	NC
2	NC
3	2 ⁵
4	2 ¹
5	20
6	2 ⁷
7	24
8	2 ²
9	2 ³
10	2 ⁶
11	Shield (GND)
12	12 to 24 VDC
13	0 V (Common)

Note: Connector type: RP13A-12PD-13SC (Hirose Electric)

Cable Specifications

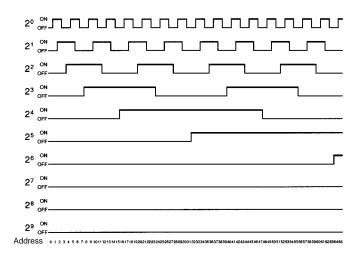

Wire color	E6C2-AG5C/E6C2-AG5B			E6C2-AN5C/ -AN5B E6C2-AB5C/AB5B			E6C2-AN1E/ AN2E	
		Output signal		Output signal	Outpu	t signal	Output signal	
	8-bit (256)	9-bit (360)	10-bit (720, 1,024)	6-bit (32, 40)	3-bit (6, 8)	5-bit (12)	8-bit (256)	
Brown	2 ⁰	2 ⁰	2 ⁰	2 ⁰	20	2 ⁰	20	
Orange	2 ¹	21	2 ¹	2 ¹	2 ¹	21	21	
Yellow	2 ²	22	2 ²	2 ²	2 ²	2 ²	2 ²	
Green	2 ³	2 ³	2 ³	2 ³	NC	2 ³	2 ³	
Blue	2 ⁴	24	2 ⁴	2 ⁴	NC	2 ⁰ × 10	2 ⁴	
Purple	2 ⁵	2 ⁵	2 ⁵	2 ⁵	NC	NC	2 ⁵	
Gray	2 ⁶	2 ⁶	2 ⁶	Parity	Positioning	Positioning	2 ⁶	
White	2 ⁷	2 ⁷	2 ⁷	Strobe	Strobe	Strobe	2 ⁷	
Pink	NC	28	28	NC	NC	NC	Rotational direction designation input	
Light blue	NC	NC	29	NC	NC	NC	NC	
	Shield (GND)							
Red	12 to 24 VDC 5, 12 VDC						5, 12 VDC	
Black	0 V (Common)	0 V (Common)						


■ Output Circuit Diagrams

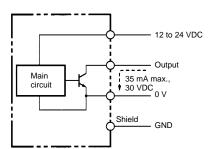
E6C2-AG5C/-AG5C-C and E6C2-AG5B Output Circuits

E6C2-AG5C/-AG5C-C

E6C2-AG5B



Note: Each output bit uses the same circuit.

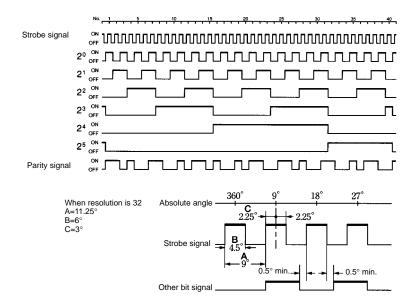

Note: Each output bit uses the same circuit.

E6C2-AG5C/-AG5C-C and E6C2-AG5B Output Modes

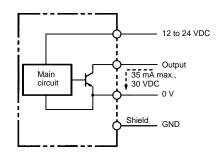
Rotating direction: CW, as viewed from the face of the shaft.

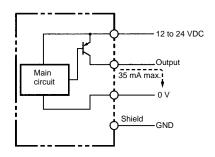
E6C2-AN5C and **E6C2-AN5B** Output Circuits E6C2-AN5C

Note: Each output bit uses the same circuit.


E6C2-AN5B

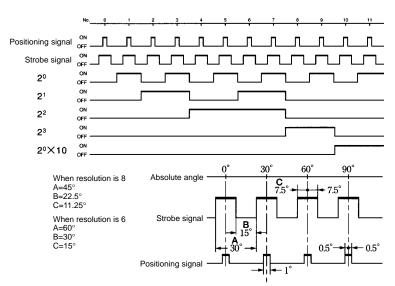
Note: Each output bit uses the same circuit.


E6C2-AN5C and E6C2-AN5B Output Modes


Rotating direction: CW, as viewed from the face of the shaft. Resolution: $40\,$

E6C2-AB5C and E6C2-AB5B Output Circuits E6C2-AB5C

E6C2-AB5B

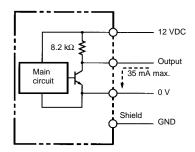

Note: Each output bit uses the same circuit.

Note: Each output bit uses the same circuit.

E6C2-AB5C and E6C2-AB5B Output Modes

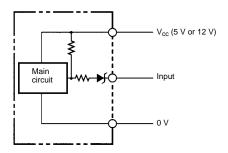
Rotating direction: CW, as viewed from the face of the shaft.

Resolution: 12



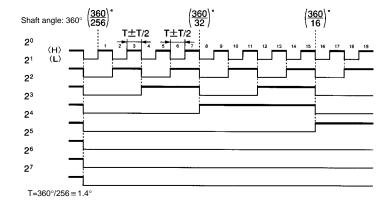
E6C2-AN1E and E6C2-AN2E Output Circuits E6C2-AN1E

5 VDC 2.4 kΩ Main circuit 35 mA max. 0 V Shield GND

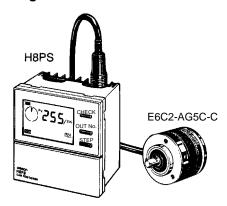

Note: Each output bit uses the same circuit.

E6C2-AN2E

Note: Each output bit uses the same circuit.


Rotational Direction Designation Input Circuit

Note: Output code increases in the clockwise direction when the input is connected to Vcc and decreases in the clockwise direction when the input is connected to 0 V.

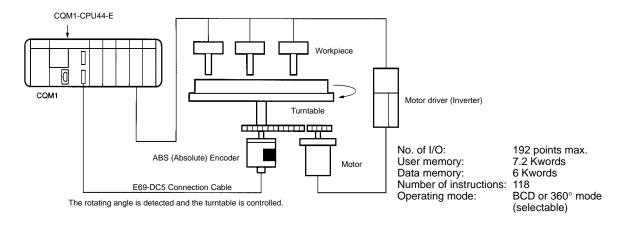

E6C2-AN1E and E6C2-AN2E Output Modes

Rotating direction: CW, as viewed from the face of the shaft, when rotational direction designation input is at "H." CCW, as viewed from the face of the shaft, when rotational direction designation input is at "L."

■ Connection Examples

Connecting E6C2-AG5C-C to H8PS Cam Positioner

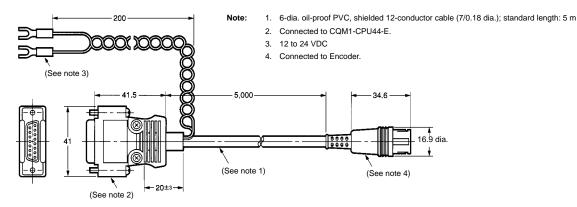
Model	Mounting method	Output configuration
H8PS-8B	Flush	NPN transistor output
H8PS-8BP		PNP transistor output
H8PS-8BF	Surface/Track	NPN transistor output
H8PS-8BFP		PNP transistor output


Specifications

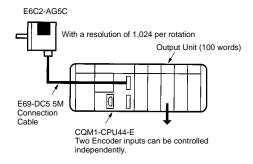
Rated voltage	24 VDC			
Cam resolution	1.4° (a resolutio	1.4° (a resolution of 256 per rotation)		
Outputs	NPN: H8PS-8B	Open-collector transistor output NPN: H8PS-8B(F) PNP: H8PS-8B(F)P		
	Cam outputs:	8 lines (Output No. 1 to 8) 30 VDC max., 100 mA max. (residual voltage: 2 V max.)		
	RUN OUT:	RUN OUT: Turns ON in Run and Test modes, OFF in Program mode in case of error 30 VDC max., 100 mA max. (residual voltage: 2 V max.)		
	TACHOMETER	TACHOMETER: 60-ppr signal output for rpm meter 30 VDC max., 30 mA max. (residual voltage: 0.5 V max. for NPN models, 2 max. for PNP models)		
Encoder response	330 rpm	330 rpm		
Functions	Rotating direction	Origin compensation (zero shift) Rotating direction selection Angle display selection Teaching		

■ Connecting E6C2-AG5C to Programmable Controller

Example of Connection to CQM1-CPU44-E High-capacity CPU Unit with Absolute Interface and RS-232C Port


Position data can be directly input as 8, 10, or 12-bit gray code signals from Absolute Encoders to the CQM1-CPU44-E. The position data input is backed up during power failures. Therefore, the origin return operation is not required after the power supply resumes. Furthermore, the origin compensation function of the E6C2-AG5C makes it possible to use any position for the origin.

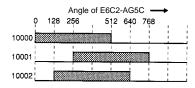
Input Specifications


Input voltage	24 VDC+10%/_15%
Input impedance 5.4 kΩ	
Input current	4 mA (TYP.)
ON voltage	16.8 VDC min.
OFF voltage 3.0 VDC max.	
Counting speed 4 kHz max.	
Input code	Gray code (8, 10, or 12 bits)

E69-DC5 5M Connection Cable for CQM1-CPU44-E (Order Separately)

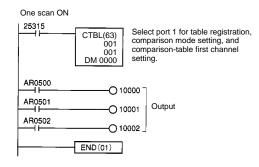
System Configuration Using a Resolution of 1,024 per Rotation

A combination of the CQM1-CPU44E and E6C2-AG5C ensures easy output angle setting for cam control in 360° or BCD mode.

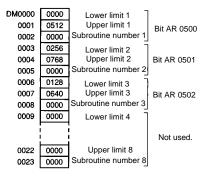


Mode Setting of CQM1-CPU44-E

Set port 1 to BCD mode and 10 bits


DM 6643 0001

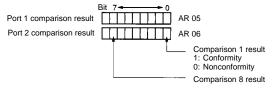
Output Timing



Ladder Program Example

Use the CTBL instruction of the CQM1-CPU44-E to register a maximum of eight comparison tables for output angle setting.

Example of DM Setting for Comparison Table

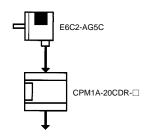


Note: An upper or lower limit can be set with integers in BCD mode and 5° increments in 360° mode. Subroutine numbers are set for interrupt processing.

Internal Bits of CQM1-CPU44-E

• Range Comparison Result

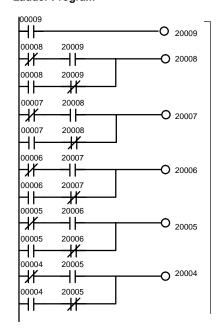
Each bit of the CQM1-CPU44-E CPU Unit's words AR 05 and AR 06 turns ON only when the comparison range coincides with the angle of E6C2-AG5C.



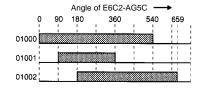
Present Value Read

The gray code signals of the E6C2-AG5C are automatically converted into BCD or 360° code signals and read through the CQM1-CPU44-E CPU Unit's words AR 232 and AR 234. The present value can be used for ladder programs.

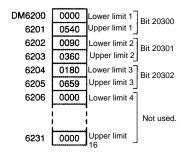
Port 1 angle	* * * *	Word 232
Port 2 angle	* * * *	Word 234


Connecting to CPM1A Using a Resolution of 720 per Rotation

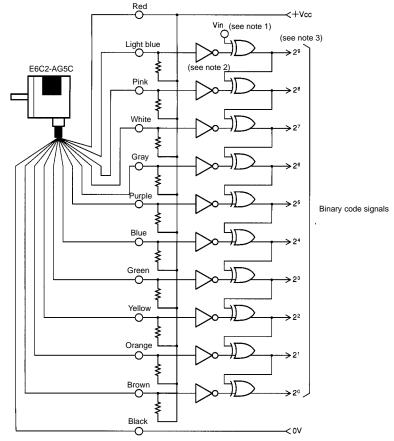
Wiring Between E6C2-AG5C and CPM1A


Output signal from E6C2-AG5C	Input signal to CPM1A
Brown (2 ⁰)	00000
Orange (2 ¹)	00001
Yellow (2 ²)	00002
Green (2 ³)	00003
Blue (2 ⁴)	00004
Purple (2 ⁵)	00005
Gray (2 ⁶)	00006
White (2 ⁷)	00007
Pink (2 ⁸)	00008
Light blue (2 ⁹)	00009

Ladder Program


Converts a gray code signal into a BIN code signal (word 200).

Output Timing

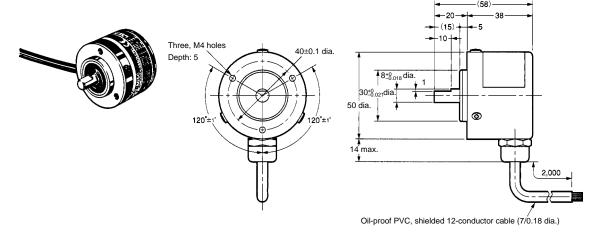


00003 20004 O 20003 # 00003 20004 20003 \dashv 00002 ||| **O** 20002 00002 20003 00001 20002 Converts a gray code signal into a BIN code signal (word 200). O 20001 ℋ 00001 20002 00000 20001 O 20000 ||| 4 00000 20001 \dashv \vdash (Always ON) 25313 BCD (24) 200 201 Converts a BIN code signal (word 200) into a BCD code signal (word 201). Subtracts 152 for a resolution of SUB (31) 201 #0152 720 per rotation. Nothing is subtracted for a resolution of 256 or 1,024 per rotation. Subtracts 76 for a resolution of 360 per rotation. If the Encoder value (word 202) exists between DM 6200 (BCMP) and DM 6231 (the comparison table), the corresponding bit of word 203 turns ON. BCMP (68) 202 DM 6200 20300 O1000 20301 \dashv \vdash O 01001 Output 20302 O 01002 END (01)

Example of DM Setting for Comparison Table

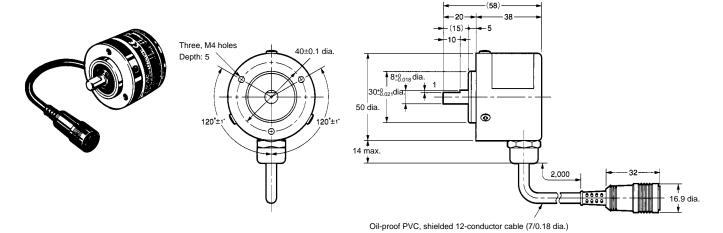
■ Gray-to-Binary Conversion Circuit Reference

Note:


- 1. Signal can be converted into positive-logic binary code signals if 0 V is connected to Vin.
- 2. Inverter
- 3. Exclusive OR (EOR)

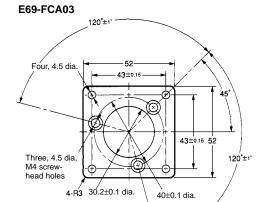
Note: The above circuit example is for 10-bit signals. For 9-bit signals, input Vin into the EOR of 2⁸, and for 8-bit signals, input Vin into the EOR of 2⁷.

Dimensions

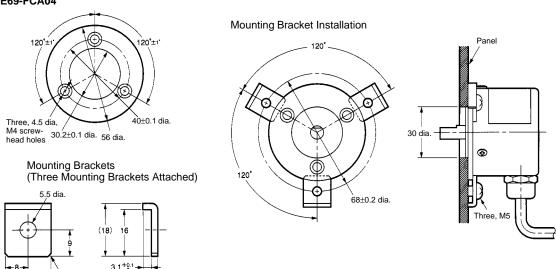

Note: All units are in millimeters unless otherwise indicated.

E6C2-A□5□ E6C2-AN□E

Note: E69-C08B Coupling is sold separately.

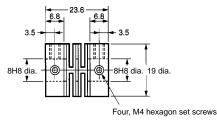

E6C2-AG5C-C

Note: E69-C08B is sold separately.


■ Accessories (Order Separately)

Flanges

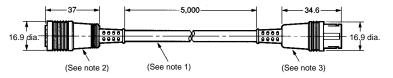
E69-FCA04


Material: SPCC (t=3.2)

Material: SPCC (t=3.2)

Coupling

E69-C08B


Note: Material: Glass-reinforced PBT

Extension Cable

E69-DF5

Note: The Cable can be extended up to 100 m for connecting the H8PS.

Note:

- 6-dia. oil-proof PVC, shielded 12-conductor cable (7/0.18 dia.); standard length: 5 m
- 2. Connects to the H8PR Rotary Positioner and H8PS Cam Positioner.
- 3. Connects to the connector of the E6C2-AG5C-C.

Precautions

- 1. The following actions may damage the E6C2-A.
 - Imposing a voltage which exceeds the rated voltage range.
 - Mistakes in wiring such as an error in power supply polarity.
 - Wiring while the E6C2-A is turned ON.
 - Load short-circuiting.
- Do not wire power lines or high-tension lines alongside the lines of the E6C2-A, otherwise the E6C2-A may be damaged or malfunction due to induction. Be sure to wire the lines of the E6C2-A separately from power lines or high-tension lines.

Correct Use

- If the power supply has surge voltage, connect a surge supressor between the positive and negative terminals of the power supply to absorb the surge voltage. Also, in order to protect the E6C2-A from noise as much as possible, shorten the wires connected to the E6C2-A as much as possible.
- 2. Unnecessary pulses are output at the time the E6C2-A is turned ON or OFF. After turning ON the E6C2-A, be sure to wait 1 s before turning ON the peripheral devices connected to the E6C2-A 1 s and turn OFF the peripheral devices 0.1 s before turning OFF the E6C2-A.
- 3. The E6C2-A consists of high-precision components and must be handled with utmost care.
 - Be sure that the E6C2-A is free of water or oil drops.
 - If the E6C2-A is mounted and wired with a cable, do not pull the cable with a force exceeding 29.4 N {3 kgf}.
 - The E6C2-A can be mounted with screws, in which case, be sure that the tightening torque applied to each screw does not exceed 0.49 N • m {5 kgf • cm}.
 - Do not impose excessive loads on the shaft, otherwise the shaft may break. The shaft may be coupled with a chain timing belt and gear only through a coupling and bearing.
 - If a significant installation error is made (misalignment), the shaft will be subjected to an excessive force that will damage the shaft.
 - When inserting the shaft into the coupling, do not use excessive force (by striking the coupling or shaft with a hammer, for example).
 - Do not impose excessive bending, pressure, or pulling force on the E6C2-A when inserting the shaft into the coupling or separating the coupling from the shaft.

ALL DIMENSIONS SHOWN ARE IN MILLIMETERS.To convert millimeters into inches, multiply by 0.03937. To convert grams into ounces, multiply by 0.03527.

Cat. No. Q107-E1-2 In the interest of product improvement, specifications are subject to change without notice.

OMRON Corporation

Industrial Sensors Division Sensing Devices and Components Division H.Q. 28th Fl., Crystal Tower Bldg., 1-2-27, Shiromi, Chuo-ku, Osaka 540-6028 Japan Phone: (81)6-949-6012 Fax: (81)6-949-6021

Printed in Japan 1298-1M (0697) (A)